循环小数和无限循环小数区别

发布网友 发布时间:2024-10-24 14:16

我来回答

1个回答

热心网友 时间:2024-11-03 16:33

一.无限小数范围大于循环小数。无限小数包含循环小数。循环小数是无限小数,但无限小数不一定是循环小数。无限循环小数的位数是潜无穷而不能是实无穷。它本质上表示一个无限趋近于某个数字的小数形式。而无限小数又分无限循环小数与无限不循环小数两类。
二.“无限趋近”也就是变量,所以无限循环小数并不是一个精确的数字。换言之,“无限循环小数”并不是一个小数,它是一个函数,它无限趋近于某个数字。
三.无限不循环小数的存在是理论证明的,因为是不可能直接验证的。理论上是先证明:两个整数的商一定是有限小数或者无限循环小数。再证明每个无限循环小数都能用两个整数的商表示。接下来证明存在某个数不可能等于两个整数的商。那么这个数就一定不是有限小数或者无限循环小数。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com