华南师范大学 化学与环境学院 合作: 指导老师:林晓明
一、实验目的
① 掌握电位差计的测量原理和原电池电动势的测定方法; ② 加深对可逆电池,可逆电极、盐桥等概念的理解; ③ 测定电池(Ⅰ)及电池(Ⅱ)的电动势; ④ 了解可逆电池电动势测定的应用。
二、实验原理
1.用对消法测定原电池电动势:
原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下进行,因此采用对消法(又叫补偿法)。
对消法是在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。
本实验使用的电动势测量仪器是SDC型数字电位差计,它是利用对消法原理设计的。 2.原电池电动势测定:
电池的书写习惯是左方为负极,右方为正极。负极进行氧化反应,正极进行还原反应。如果电池反应是自发的,则电池电动势为正。符号“|”表示两相界面,“||”表示盐桥。
在电池中,电极都具有一定的电极电势。当电池处于平衡态时,两个电极的电极电势只差就等于该可你电池的电动势,规定电池的电动势等于正、负电极的电极电势之差,即
E=φ+-φ-
式中,E是原电池的电动势。φ+、φ-分别代表正、负极的电极电势。 根据电极电位的能斯特方程,有
O+
-RT/ZF·ln(α还原/α氧化)
- O -RT/ZF·ln(α还原/α氧化)
电池(Ⅰ)Hg|Hg2Cl2(s)|KCl(饱和)‖AgNO3(0.02mol/L)|Ag 负极反应:Hg + Cl(饱和) 1/2Hg2Cl2 + e 正极反应:Ag + e Ag 总反应:Hg + Cl(饱和)+ Ag
-+
+
---
1/2Hg2Cl2 + Ag
根据电极电位的能斯特公式,正极银电极的电极电位:
φAg/Ag+ = φ
其中 φ
θ
θ
Ag/Ag+ + 0.05916V lgɑAg+
Ag/Ag+ = 0.799 - 0.00097(t-25)
+
又因AgNO3 浓度很稀,ɑAg+ ≈ [Ag] = 0.02
负极饱和甘汞电极电位因其氯离子浓度在一定温度下是个定值,故其电极电位只与温度有关,其关系式:
φ饱和甘汞 = 0.2415 - 0.00065(t–25)
而电池电动势 E = φ - φ;可以算出该电池电动势的理论值。与测定值比较即可。 3.电动势测定的应用:
求溶液的pH值,通常将醌氢醌电极与饱和甘汞电极组成原电池,测定其电动势,则溶液的pH值可求。
电池(Ⅱ)Hg|Hg2Cl2|KCl(饱和)||H(0.2mol/L HAc+0.2mol/L NaAc)Q·QH2|Pt 醌氢醌是一种暗褐色晶体,在水中溶解度很小,在水溶液中依下式部分溶解。
C6H4O2·C6H4(OH)2(醌氢醌)== C6H4O2(醌)+C6H4(OH)2(氢醌)
在酸性溶液中,对苯二酚解离度极小,因此醌与对苯二酚的活度可以认为相同,即 α醌=α氢醌。
醌氢醌电极的制备很简单,只需待测pH值溶液以醌氢醌饱和,浸入惰性电极(铂电极)中即可。醌氢醌电极作为还原电极时,电极反应是
C6H4O2(醌)+2H+ +2e- →C6H4(OH)2(氢醌)
其电动势为:φ醌氢醌 =φ其中φ
θ
醌氢醌
+
+
-
θ
醌氢醌
–RT/F·ln 1/αH+ =φ
θ
醌氢醌
-2.303RT/F ·pH
=0.6994-0.00074(t-25)
通过实验测得电池的电动势,就可以计算出溶液的pH值。
三、实验仪器及用品
1.实验仪器:
SDC数字电位差计、超级恒温槽、饱和甘汞电极、光亮铂电极、银电极、250mL烧杯、20mL烧杯、U形管。 2.实验试剂:
0.02mol/L的硝酸银溶液、饱和氯化钾溶液、硝酸钾、琼脂。
四、实验步骤
1.制备盐桥
3%琼脂-饱和硝酸钾盐桥的制备方法:在250mL烧杯中,加入100mL蒸馏水和3g琼脂,盖上表面皿,放在石棉网上用小火加热至近沸,继续加热至琼脂完全溶解。然后加入40g硝酸钾,充分搅拌使硝酸钾完全溶解后,趁热用滴管将它灌入干净的U形管中,两端要装满,中间不能有气泡,静置待琼脂凝固后便可使用。制备好的盐桥丌使用时应浸入饱和硝酸钾溶液中,防止盐桥干涸。 2.组合电池
将饱和甘汞电极插入装有饱和硝酸钾溶液的广口瓶中。将一个20mL小烧杯洗净后,用数毫升0.02mol/L的硝酸银溶液连同银电极一起淌洗,然后装此溶液至烧杯的2/3处,插入银电极,用硝酸钾盐桥不饱和甘汞电极连接构成电池。 3.测定电池的电动势
①根据Nernst公式计算实验温度下电池(I)、(Ⅱ)的电动势理论值。
②正确接好测量电池(I)的线路。电池与电位差计连接时应注意极性。盐桥的两支管应标号,让标负号的一端始终不含氯离子的溶液接触。仪器要注意摆布合理并便于操作。
③用SDC数字电位差计测量电池(I)的电动势。每隔2min测一次,共测三次。 ④同法,用SDC数字电位差计测量电池(Ⅱ)的电动势,要测至平衡时为止。 测量完毕后,倒去两个小烧杯的溶液,洗净烧杯的溶液。盐桥两端淋洗后,浸入硝酸钾溶液中保存。
五、实验数据记录与处理
将实验数据列入表1中。
室温: 23.5℃ 大气压: 1014.3hPa 1.电池(I)测定记录 恒温槽: 30℃ RT18.314*303.551 Agln0.7893ln0.69198V /AgAg/AgFaAg965000.02 饱和甘汞0.2415—0.00065(30.025)0.238V E理论Ag/Ag—饱和甘汞0.45373V
表1 电池(Ⅰ)实验数据记录表 测定值/V 测定平均值/V 一次 0.45510
2.电池(Ⅱ)测定记录 恒温槽: 30℃ PH理论值=-lg[H]=-lg(ca/cb*Ka)=4.74
+
理论计算值/V 相对误差 二次 0.45530 三次 0.45540 0.45527 0.45373 0.34% 醌氢醌[0.69940.00074*(3025)]0.6957
醌氢醌醌氢醌2.303RTpH0.69570.06015pH F
E2醌氢醌饱和甘汞0.69570.06015pH0.23825PH测定=(0.45745-E)/0.06015=4.50
表2 电池(Ⅱ)实验数据记录表
电动势/V 测定值 2min 4min 6min 0.18673 平均值 0.18685 利用测得的电动势理论值 求得溶液的pH值 4.50 4.74 5.06% 相对误差 pH值 0.18071 0.18681
六、讨论与分析
1.误差分析:
(1)温度的影响:文献值是在298.15K时测定得到的;而实验测定时并不是在298.15K下进行,且测定过程中还有升温的操作,故温度的偏差会对结果带来影响。
(2)仪器的不稳定带来较大误差:调节电桥平衡的操作时间应尽可能的短,否则电极
上较长时间的有电流通过,会发生电池反应使得溶液浓度下降、电极表面极化,这样可逆电极变成不可逆的,会给实验带来较大误差。而本次实验中所用仪器不稳定,需要较长的时间才能大致调节到平衡,即使是同一个电动势值,在很短的时间内测得的数据都有较大波动,所以不能很快调节到平衡是实验的误差主要来源。
(3)电流无限小的情况下测量,才能达到可逆电池的要求,但在实验过程中电流无法达到无限小仍存在一定值的电流,于是产生的极化作用破坏了电池的可逆性,使电动势偏离可逆值。
(4)恒温槽温度存在波动,电镀不均匀,会造成不稳定。此外实验中采用盐桥来消除液接电位,但实际实验中由于一开始的时候仪器不稳定,导致无法正常测定,最后得更换仪器后重新测定。而此时,盐桥已经被消耗一部分,其作用被减弱,不能保证盐桥能够完全消除液接电位。 2.数据分析:
观察实验测得的数据,可以看到,在相同温度下,随着反应时间的增加,原电池测得的电动势值并非维持在稳定态,而是逐渐降低的。产生这种现象的主要原因有两个:
(1)随着时间的增加,反应也在不断地进行,电极的反应物也被不断地消耗,导致Ag
-+
的浓度减小。由原电池反应的能斯特方程可知饱和甘汞电极由于Hg为纯液态,Cl也达到饱和态,因此这两者的浓度可看作不变,即原电池负极的电极电势不变;另外,Ag的浓度减小导致正极电势减小,电池反应的E减小,测得的结果也逐渐变小。
(2)随着反应的进行,盐桥也在不断地消耗。插入盐桥的目的就是为了降低液接电势,减少电池的极化现象。但因为盐桥被消耗,会导致其工作能力下降,电池的极化现象严重化,导致电池反应的E减小,测得的结果也逐渐变小。
+
七、思考题
1.为何测定电动势要用对消法?对消法的原理是什么?
解:原电池电动势不能能用伏特计直接测量,因为电池与伏特计连接后有电流通过,就会在电极上发生生极化,结果使电极偏离平衡状态。另外,电池本身有内阻,所以伏特计测得的只是不可逆电池的端电压。而测量可逆电池的电动势,只能在无电流(或极小电流)通过电池的情况下进行,因此采用对消法。
对消法的原理:在待测电池上并联一个大小相等、方向相反的外加电源,这样待测电池中没有电流通过,外加电源的大小即等于待测电池的电动势。
2.测电动势为何要用盐桥?如何选用盐桥以适合不同体系?
解:使用盐桥可以有效地减弱液体接界电位,减小电池的极化现象带来的干扰,使测定更加准确。选用盐桥时,要求盐桥的盐浓度远远高于被测物的浓度,最少应大于10倍以上。此外,还要求盐桥的正、负离子迁移速率尽量相等,且不与溶液反应,最好选用与电极具有相同离子的盐桥,以排除引入外来离子造成测定干扰。 3.使用醌氢醌电极的限制条件是什么?
解:在酸性溶液中,方有α醌=α氢醌。
参考文献
[1] 何广平,南俊民,孙艳辉等. 《物理化学实验》[M].华南师范大学化学实验教学中心, 化学工业出版社,2007.
[2] 傅献彩,沈文霞等编. 物理化学. 第四版. 北京:高等教育出版社,2008.
因篇幅问题不能全部显示,请点此查看更多更全内容