您的当前位置:首页正文

小鼠骨髓间充质干细胞采集和体外扩增新方法

2020-11-06 来源:V品旅游网
HindawiPublishingCorporation

JournalofBiomedicineandBiotechnologyVolume2010,ArticleID105940,10pagesdoi:10.1155/2010/105940

MethodologyReport

AnImprovedHarvestandinVitroExpansionProtocolforMurineBoneMarrow-DerivedMesenchymalStemCells

SongXu,1,2,3AnnDeBecker,1,2BenVanCamp,2KarinVanderkerken,2andIvanVanRiet1,2

1Stem

CellLaboratory-DivisionClinicalHematology,UniversitairZiekenhuisBrussel(UZBrussel),Laarbeeklaan101,1090Brussels,Belgium

2DepartmentofHematologyandImmunology,VrijeUniversiteitBrussel(VUB)—MyelomaCenter,Laarbeeklaan103,1090Brussels,Belgium

3DepartmentofLungCancerSurgery,LungCancerInstitute,TianjinMedicalUniversityGeneralHospital,Tianjin300052,ChinaCorrespondenceshouldbeaddressedtoIvanVanRiet,ivan.vanriet@uzbrussel.beReceived9July2010;Revised6October2010;Accepted25October2010AcademicEditor:BarryJ.Byrne

Copyright©2010SongXuetal.ThisisanopenaccessarticledistributedundertheCreativeCommonsAttributionLicense,whichpermitsunrestricteduse,distribution,andreproductioninanymedium,providedtheoriginalworkisproperlycited.

Comparedtobonemarrow(BM)derivedmesenchymalstemcells(MSCs)fromhumanoriginorfromotherspecies,theinvitroexpansionandpurificationofmurineMSCs(mMSCs)ismuchmoredifficultbecauseofthelowMSCyieldandtheunwantedgrowthofnon-MSCsintheinvitroexpansioncultures.WedescribeamodifiedprotocoltoisolateandexpandmurineBMderivedMSCsbasedonthecombinationofmechanicalcrushingandcollagenasedigestionatthemomentofharvest,followedbyanimmunodepletionstepusingmicrobeadscoatedwithCD11b,CD45andCD34antibodies.ThenumberofisolatedmMSCsasestimatedbycolonyformingunit-fibroblast(CFU-F)assayshowedthatthismodifiedisolationmethodcouldyield70.0%moreprimarycolonies.Afterimmunodepletion,ahomogenousmMSCpopulationcouldalreadybeobtainedaftertwopassages.ImmunodepletedmMSCs(ID-mMSCs)areuniformlypositiveforstemcellantigen-1(Sca-1),CD90,CD105andCD73cellsurfacemarkers,butnegativeforthehematopoieticsurfacemarkersCD14,CD34andCD45.Moreovertheimmunodepletedcellpopulationexhibitsmoredifferentiationpotentialintoadipogenic,osteogenicandchondrogeniclineages.OurdataillustratethedevelopmentofanefficientandreliableexpansionprotocolincreasingtheyieldandpurityofmMSCsandreducingtheoverallexpansiontime.

1.Introduction

Mesenchymalstemcellsareself-renewingandmultipotentprogenitorsthatcandifferentiateintoavarietyofcelltypes,includingadipocytes,osteoblasts,chondrocytes,myocytes,hepatocytes,cardiomyocytes,neurons,andbeta-pancreaticisletscells[1–4].BMisthemostcommonsourceofMSCs.However,MSCshavealsobeenisolatedfromvariousothersources,namely,placenta,amnioticfluid,cordblood,fetalliver,andadiposetissue[5–9].MSCshavebeenreferredbyotherterminologysuchascolony-formingfibroblasticcells,marrowstromalstemcells,andmesenchymalprogenitorcells[10–12].Atpresent,MSCsarereportedtopossess,besidestheirmultipotentdifferentiationcapacity,alsootherpropertiessuchaslowimmunogenicityandtissue-homingabilitymakingthemanattractivetoolforcell-mediated

therapyinseveraldiseasesprocesses,includingtissueinjuryandtissuedegenerationaswellasgraft-versus-hostdisease[13–16].

MSCshavebeensuccessfullyisolatedandcharacterizedfromBMsamplesofmanyspeciesincludinghuman,rabbit,rat,sheep,goat,rhesusmonkeys,dog,andpigthroughtheirpreferentialattachmenttotissuecultureplastic[17–25].Incontrast,theisolationandpurificationofmMSCsfromBMhasbeenmoredifficultthanthatfromhumanandotherspecieswhosemarrowadherentcellsarerelativelyhomogenousandcontainahighpercentageofMSCs.ThefutureuseofMSCsforhumandiseasetherapiesdependsontheestablishmentofrepresentativeandefficientpreclinicalanimalmodels.Inmanyrespects,amurinemodelisanidealmodeltostudythecellbiologyandthetherapeuticpotentialofMSCs.Thestandardmethodofplasticadherencehas,

2

however,provenineffectivetoyieldrelativelypuremMSCspopulationssincevarioushematopoieticcelllineagessurviveand/orproliferateonstromallayers,evenintheabsenceofexogenouscytokines[26].Themajorityofthecontaminatedhematopoieticcellscanberemovedafteraprolongedexpansiontimebyfrequentsubculturing.TheMSCsdiffer-entiationpotentialsmight,however,decreaseduringlong-terminvitroculture.Inaddition,severalreportssuggestthatmMSCscanundergospontaneoustransformationfollowinglongterminvitroculture[27–29].Sofar,severaltechniqueshavebeendescribedtoreduceoreliminatenon-MSCsfromplasticadherentmurineBMcultures,includingtheuseoflow-densityculture,frequentmediumchange,andpositiveandnegativeselection[30–37].However,noneofthesetechniqueshasgainedwidespreadacceptancesofar.Itis,therefore,stillnecessarytodevelopastandardized,reliable,andeasy-to-performmethodtoobtainhighamountsofpurifiedmMSCs,butwithreducedexpansiontimetoavoidpossibletransformationandtoretainthedifferentiationpotentialoftheexpandedstemcells.Ourpresentstudyaimedtodevelopanimprovedmethodtoincreasetheyieldandpurityofculture-expandedmMSCs.

2.MaterialsandMethods

2.1.mMSCsModifiedHarvestandPrimaryCulture.C57BL/KaLwRijmice(HarlanCPB,TheNetherlands),6–8weeksold,weresacrificedbycervicaldislocation.Thehindlegsandvertebraeweredissectedandcarefullycleanedfromadherenttissues.ThestandardacceptedisolationforBM-derivedMSCswastoflushBMcellsfromhindlegs[38].Here,wemodifiedtheharvestprotocol.AfterthetipsofeachbonewereremovedandtheBMwascollectedbyflushingoutthecontentoffemursandtibiaswithRPMI1640(Lonza,Verviers,Belgium),wefurtherchoppedthefemurs,tibiasandvertebraeintofinepieces(1-2mm)withascalpelandcrushedgentlywiththebacksideofa5-mlsyringeinRPMI1640.Next,thebonefragmentsweretransferredintoa50mlpolypropylenetubewith10ml0.25%CollagenaseAsolution(RocheDiagnosticsGmbH,Mannheim,Germany).ThetubewithbonefragmentsandCollagenaseAsolutionwasplacedin37◦Cwaterbathfor30minutes.Nextphosphatebufferedsaline(PBS)wasaddedtoafinalvolumeof30ml.Whenthefragmentsweresettled,supernatantwascollected,mixedwiththepreviouslyharvestedcells,andfilteredthrough70-μmnylonmeshfilter.CellswerethenwashedtwicewithPBS,andsubsequentlynucleatedandviablecellswerecountedinahemocytometerusing3%AceticacidwithCrystalVioletandTrypan2Blue,respectively.Cellswereplatedat1×106cells/cminMcCoy’s5Amedia(Lonza,Verviers,Belgium)containing20%mesenchymalstemcellstimulatorysupplementsformouse(StemCellTechnologies,Vancouver,BC,Canada),1%L-glutamine(Lonza,Verviers,Belgium),and1%penicillin/streptomycin(Lonza,Verviers,Belgium).Theculturewaskeptinahumidified5%CO2incubatorat37◦Cfor24–48hours,followedbyremovalofnonadherentcellswithPBSandreplacementwithfreshcompletemedium.Alloftheproceduresinvolvingmicewere

JournalofBiomedicineandBiotechnology

approvedbytheEthicalCommitteeforAnimalExperiments,VUB(licenseno.LA1230281).

2.2.IncreasingthePurityofinVitroExpandedmMSCsbyImmunodepletionandmMSCsSubculture.Afterabout7–10days,whenprimarycultures(passage0)becamenearlyconfluent,thecellsweredetachedwith0.25%trypsin/0.02%EDTAfor5minutesat37◦C.Theresidualcellswhichwerenotdetachedwithin5minuteswerecollectedbygentlescrapingusingacellscraper.Thecellswereresuspendedin1ml0.1%BSA/PBS,followedbyanimmunodepletionusinganti-CD11b,CD34,CD45-conjugatedDynabeadsM-280Streptavidinsuperparamagneticpolystyrenebeads(InvitrogenDynalAS,Oslo,Norway)accordingtotheman-ufacturer’sinstruction.Inbrief,Dynabeadswerewashedwith0.1%BSA/PBSfor5timesandthenprecoatedwiththefollowingbiotinylatedantibodies,respectively,atappropriateconcentration(5–10μgantibodiespermgDynabeadsM-280streptavidin)byincubationfor30minutesatroomtemperatureusinggentlerotation:BiotinantimouseCD11b,CD34andCD45(eBioscience,SanDiego,USA).ThreeconsecutiveroundsofimmunodepletionusingantibodiesagainstCD11b,CD34andCD45,respectively,wereper-formedfordepletingcontaminatednon-MSCs.Ineachcase,cellsandantibodyconjugatedDynabeadswerethoroughlymixedataratioof1cell:5beadsandincubatedontherotatorfor30minutesat4◦C.Then,cellswerewashedusingaDynalMPCtoremoveunboundcells.Theimmunodepletedcellsweresuspendedincompletemedium,platedinoneT-25flaskat1000cells/cm2(Nunc,VWRInternational,Leuven,Belgium)followedbyincubationina37◦Cwith5%CO2humidifiedincubator.Culturemediumwaschangedevery3-4daysuntilcellculturereached80%–90%confluence.Atthatpointcellsweretrypsinized(passage1)andplatedinoneT-75flaskat1000cells/cm2.Subsequentpassageswereperformedsimilarly,butsplitratioswere1:2(T-75flask).2.3.CFU-FAssay.TheCFU-Fassaywas6performedasdescribedpreviously[39].Inbrief,1×10nucleatedcellsobtainedfromfreshBMwereplatedintoeachwellofasix-wellplateandincubatedfor10daysinhumidifiedatmosphere(37◦C,5%CO2).Culturemediumwaschangedondays3and8ofculture.Subsequently,cultureswerefixedandstainedwithGiemsa.ThenumberofcoloniesdisplayingfiveormorecellswithspindledmMSCsmorphologywasscoredunderaninvertedmicroscope.Colonieswhosemor-phologyclearlydifferedfromthemMSCmorphologywereexcludedfromtheresults.ThisassaywasperformedusingBMsamplesfrom10mice(for5mice,cellswereisolatedusingCollagenase,whilefor5othermicecellswereisolatedwithoutCollagenase).Eachsamplewasanalyzedintriplicate.2.4.GrowthCurveandDoublingTime.Passage1mMSCswereplatedin6-wellcultureplatesat2000cells/wellinmediumwith20%mesenchymalstemcellstimulatorysupplementsor10%fetalbovineserum(FBS).Thecellsfromeachwellweretrypsinizedandcountedinduplicatewithahemocytometereverytwodaysuntilday12.Thedoubling

JournalofBiomedicineandBiotechnology3

ThehindlegsandvertebraearedissectedandremovedfromadherenttissuesFlushBMCutbonesCrashbones(a)tionedigessanegCollaMixflushedBMandenzyme-treatedfragmentsforculture24hlater,washandrefreshmedium100μmT=24hRefreshmediumevery3days100μmT=7d100μmCellsarecharacterizedbymorphology,cell-surfaceantigensandtri-lineages

differentiationability

CD11b/CD34/CD45microbeads-basedimmunodepletiontoremovecontaminatedhematopoieticcells

(b)

Figure1:Flowchartforourmodifiedharvestandexpansionprotocol.(a)Miceweresacrificedbycervicaldislocation.Thehindlegsandvertebraeweredissectedandcarefullyremovedfromadherenttissues.TheBMwascollectedbyflushingoutthecontentoffemursandtibiaswithRPMI1640.Next,thefemurs,tibias,andvertebraewerecuttedintosmallpiecesandcrushedgently.Next,thebonefragmentswereincubatedwith0.25%CollagenaseAsolutionin37◦Cwaterbathfor30minutes.(b)Collagenase-treatedbonefragmentsweremixedwiththepreviouslyflushedBMcells,filteredthrough70-μmnylonmeshfilterandculturedat1×106cells/cm2.At24hafterinitialculture,thenonadherentcellswerewashedaway.Afterabout7–10days,whenprimaryculturesbecamenearlyconfluent,thecellsweretrypsinized,followedbyaCD11b/CD34/CD45negativeimmunodepletioninordertoremovecontaminatedhematopoieticcells.Theimmunodepletedcellswerecultivatedandcharacterizedattheleveloftheirmorphology,immunophenotype,anddifferentiationpotentials.Scalebar=100μm.

timewascalculatedaccordingtotheequation:TD=t×lg2/lg(Nt/N0),whereN0istheinitialcellnumber,Ntistheendpointcellnumber,andtistimeinterval.

2.5.FlowCytometryAnalysis.mMSCsweredetachedfromtheculturedishusing0.25%trypsin/0.02%EDTA,and1×

105mMSCswerewashedby4%HuAlb/PBSandpelletedbycentrifugationfor3minutesat400g.Thecellswerestainedwithratanti-mouseCD14,CD34,CD105,Sca-1,CD45,CD90(allpurchasedfromeBioscience,SanDiego,USA),andCD73(PharMingen,SanDiego,USA),ataconcentrationof2μg/mlat4◦C.Thecellsstainedwithcorrespondingrat

4

JournalofBiomedicineandBiotechnology

30CFU-F/106BMnucleatedcells20

10

100μm

0

Standardharvest(a)

Modifiedharvest(b)

Figure2:OptimizedisolationofmurineBMderivedMSCs.(a)IntheCFU-Fassay,70.0%morecoloniesareobservedwiththemodifiedisolationmethod,n=6/group.∗P<.05(b)OnerepresentativecolonyinCFU-Fassay(Giemsastaning,×40),scalebar=100μm.

×1042.6.DifferentiationAssays

2.6.1.AdipogenicDifferentiation.Foradipogenicdifferenti-ation,2×105P3mMSCswereseededintoawellofa6-wellplate(Nunc,VWRInternational,Leuven,Belgium)andfedevery2-3daysbyreplacingthecompletemediumuntilaconfluentcelllayerwasformed.Thencells,werestimulatedtodifferentiateintotheadipogeniclineagebysubmittingthemtothreecyclesofalternatingcultureinadipogenicinductionmedium(LONZA,Walkersville,USA)andadipogenicmaintenancemedium(LONZA,Walk-ersville,USA)accordingtothemanufacturer’sinstruc-tions.TheadipogenicinductionmediumcontainsaccordingtothemanufactureInsulin(recombinant),L-glutamine,MCGS,dexamethasone,indomethacin,IBMX(3-isobuty-l-methyl-xanthine),andPen/Strep,whilethetheAdipogenicMaintenanceMediumincludesinsulin(recombinant),L-Glutamine,MCGS,andpen/strep.Attheendofthesecycles,cellsweregrownforanother7daysinadipogenicmaintenancemedium.AsacontrolMSCweregrowninAdipogenicMaintenanceMediumonlytoexcludesponta-neousadipogenicdifferentiation.Tovisualizeadipocytes,cellswerestainedwithOilRedO(Sigma,Bornem,Belgium)[40].

2.6.2.OsteogenicDifferentiation.Osteogenicdifferentiationwasinducedbyexposing3×104P3mMSCstoosteogenicinductionmedium(LONZA,Walkersville,USA)intoawellofa6-wellplate.Themediumwaschangedevery3to4days.Asanegativecontrol,cellswereculturedincompletemediumandmediumwaschangedatthesamefrequencyasthatforthedifferentiatingMSC.Theosteogenicinductionmediumcontainsaccordingtothemanufacturerdexamethasone,L-Glutamine,ascorbate,Pen/Strep,MCGS,andglycerophosphate.Toverifyosteogenicdifferentiation,vonKossa’smethodwasusedtostaincalciumdeposits[41].

2520Cellnumber151050

0246Time(day)81012Supplements10%FBSFigure3:Comparisonproliferationrateinmediumwithfetalbovineserumversusmesenchymalstemcellstimulatorysupple-ments.Passage1cellsshowahighergrowthrateinmediumwithmesenchymalstemcellstimulatorysupplementsascomparedtotheproliferationrateobservedinmediumwiththe10%FBS.Thevaluesareexpressedasmeans±SDof3independentmeasurements.

anti-mouseIgGservedasnegativecontrols.After30minutes,unboundantibodywaswashedwith2ml1%HuAlb/PBS.Next,thecellswereincubatedwith10μLmouseantiratfluoresceinisothiocyanate(FITC)antibodyat4◦Cfor30minutesfollowedbyawashwith2ml1%HuAlb/PBS.Thecellpelletswereresuspendedin600μlPBSandexaminedbyflowcytometry(CoulterEpicsXL-MCL,Brussels,Belgium)with5,000eventsbeingrecordedforeachcondition.TheresultswereanalyzedbycellquestsoftwareandWinMDI2.8softwarewasusedtocreatethehistograms.

JournalofBiomedicineandBiotechnology

2.6.3.ChondrogenicDifferentiation.Inordertoinducechon-drogenicdifferentiation2.5×105P3mMSCswerewashedtwiceinincompletechondrogenesisinductionmedium(LONZA,Walkersville,USA).Cellswerethensedimentedbycentrifugationat150gfor5minutesand0.5mLcom-pletechondrogenesisinductionmedium(LONZA,Walk-ersville,USA)wasaddedtothecellpellet.Incompletechondrogenesisinductionmediumcontainsaccordingtothemanufacturerdexamethasone,ascorbate,ITS+supple-ment,pen/strep,sodiumpyruvate,ProlineandL-Glutamine.Completemediumwasmadebyadding5μLTGFβ3(LONZA,Walkersville,USA)to1mLincompletemedium.Themediumwaschangedevery3to4days.After21daysofculture,thepelletswereembeddedinparaffin,cutinto4μmsectionsandimmunohistochemicallystainedbyArabbitpolyclonalanticollagenIIantibody(NCL-COLL-IIp,NovoCastra,Prosan,Merelbeke,Belgium).

2.7.StatisticalAnalysis.Statisticalsignificancewasassessedbycomparingmeanvalues(±SD)usingMannWhitneytest.P<.05wereconsideredstatisticallysignificant.

3.Results

Asshownintheflowchart(Figure1),theisolationandexpansionmethodofBM-derivedmMSCsincludesacombi-nationofmechanicalbonecrushing,enzymatictreatmentofbonefragments,andflushingoutBMcellsattheharveststepwithimmunodepletionofCD11b+,CD34+,andCD45+cellsinthefollowingculturestep.

ThenumberofBM-nucleatedcellsharvestedwiththemodifiedmethodwas19.4%higherthanthenumberofBMnucleatedcellsobtainedbythestandardmethodalthoughthisdifferencewasnotsignificant(datanotshown).How-ever,withthemodifiedharvestmethod,themeannumberofcolonieswas70.0%morethanthemeannumberofcoloniesobtainedbythestandardmethod(P<.05)(Figure2(a)).Thenumberofcoloniesdisplayingfiveormorecellswasscoredunderaninvertedmicroscope(Figure2(c)).Colonieswithfourcellswerecountedwhenoneofthempresentedtwonuclei.ColonieswhosemorphologyclearlydifferedfromthemMSCmorphologywereexcludedfromtheresults.Wecomparedmediumwithfetalbovineserum(FBS)tomediumwithmesenchymalstemcellstimulatorysupplements(mouse)fromStemcelltechnologiesandfoundthatcellsculturedwithMesenchymalStemCellStimulatorySupplementsshowedahigherproliferationrate(Figure3).

Usingthestandardexpansionconditions,culturesusu-allyremainedmorphologicallyheterogeneousatpassage2,presentinground,polygonal,spindle-shaped,andflattenedcells(Figure4).Somedegreeofmorphologicalheterogene-itycouldstillbeobserveduptopassage6–8(datanotshown).However,usingtheimmunodepletionstep,muchlessheterogeneitycouldbeobserved,andatpassage2,ahomogeneouspopulationofspindle-shapedcellscouldbeobserved.ThedoublingtimeofID-mMSCswasfoundtobe46.9±1.78h.

5

P0100μmControlIDP2P2100μm100μmFigure4:MorphologyofculturedmouseBMcells.SevendayspostharvestCD11b/CD34/CD45immunodepletionwasperformed.Culturedcellsalreadyappearedhomogeneousalreadyatpassage2whilecontrolsremainheterogeneous(×100).Representativepicturesareshown,n=6/group,scalebar=100μm.

WefurtherinvestigatedwhetherthetwodifferentharvestmethodshadaneffectontheyieldsofID-mMSCs.Theresultshowedthatusingthesameimmunodepletionprocedure,theID-mMSCyieldwiththestandardisolationmethodwas3.7%,whiletheyieldwiththemodifiedisolationmethodcouldreachupto6.6%(Figure5(a)),confirmingthatourmodifiedisolationmethodresultsinahighermMSCharvest.

Thecells(culturedwithandwithoutimmunodepletion)werefurtheranalyzedforcellsurfaceantigensatpassage3.ResultsshowedthatID-mMSCswerestronglypositiveforCD90,CD73andSca-1,buttotallynegativeforCD14,CD34,andCD45(Figure5(b)).Thecellpopulationcul-turedwithoutimmunodepletionshowedsignificantlylessexpressionofCD90,CD73,andSca-1butmoreexpressionofCD45comparedwithID-mMSCs(Figure5(c)).WithoutimmunodepletionmMSCsstillseemedtobecontaminatedwithhematopoieticcellsafter5-6passages,whichwasconsistentwiththemorphologicalobservations.

Tri-lineagedifferentiationabilitiesofcellsculturedwithandwithoutimmunodepletionweretestedatpassage3.Whenculturedinadipogenic,osteogenic,andchondro-genicmedia,cellswereabletodifferentiateexclusivelyintoadipocytes,osteoblasts,andchondrocytesasdeterminedby

6

15

Nucleatedcellsyieldafterimmunodepletion(%)∗JournalofBiomedicineandBiotechnology

64Sca-164CD9010

05

640

Standardharvest(a)20

∗1001011021031040100101102103104

CD7364CD105Modifiedharvest0100101102103CD141040100101102103CD45104

64Percentageofpositivecells(%)1510

050

CD14P5controlP5ID(c)CD34CD4510010110264103CD341040100101102103104

640100

101

102

103

104

(b)

Figure5:Cell-surfaceantigensonmMSCs.(a)TheyieldofID-mMSCswithmodifiedisolationmethodis78.3%higherascomparedtothestandardisolationmethold,n=6/group,∗P<.05.(b)ArepresentativephenotypeofID-mMSCsfrom6donorsatpassage3.PlotsshowisotypecontrolIgGstainingprofile(red)versusspecificAbstainingprofile(white).(c)ContaminatedheamatopoieticcellsstillcanbedetectedinthenonimmunodepletedMSCfractionshowingCD14,CD34,andCD45expressionatpassage5,n=6/group,∗P<.05.

OilRedO,vonKossaandtypeIIcollagenstaining,respec-tively.However,thedifferentiationabilitiesweresignificantlydifferent.Theextentofadipogenicdifferentiationwasquan-tifiedbycountingOilredO-positivecellspercm2.AsshowninFigure6(a),theamountofOilredO-positivecellsintheimmunodepletedgroupwassignificantlyhigherthanthatofthecontrolgroup.Whenosteogenicdifferentiationwasexaminedusingabonenoduleformationassay,vonKossastainingrevealedthatcellsculturedafterimmunodepletionproducedsignificantlymorecalciumnodulesthancellsculturedwithoutimmunodepletion(Figure6(b)).Inaccor-dance,chondrogenicdifferentiationofID-cellswasmorepronouncedcomparedtocontrolcells(Figure6(c)).ThesedataindicatethatahigherpurityofmultipotentmouseMSCscanbeachievedafterimmunodepletionofCD11b,CD34,andCD45positivecells.Moreover,weobservedthatlatepassageID-mMSCs(atpassage8)retainedtheirrobustcapacitytodifferentiateintoadipocytes,osteoblasts,andchondrocytes(Figure7).

4.Discussion

Mesenchymalstemcells(MSCs)havegeneratedagreatdealofinterestandpromiseasapotentialsourceofcells

forcell-basedtherapeuticstrategiesfortissuerepairandregenerativediseases,primarilyowingtotheirintrinsicabilitytoselfrenewanddifferentiateintofunctionalcelltypesthatconstitutethetissueinwhichtheyexist.Atpresent,thereisalsoagreatinterestforgeneticallymodifiedMSCsincell-basedtherapyforcancersbasedontherationaleoftumor-homingpropertiesofMSCs.However,mostofMSCtherapeuticapplicationsarestillinpreclinicalstudies.

FriedensteinandhiscolleaguesfirstlyestablishedMSCsculturefromguineapigbyvirtueofMSCspreferentialattachmenttoplasticflasks[38],andtheoriginalmethodhasbeenfurtherusedforthecultureBMMSCsfromhumanandotherexperimentalanimals[17–22].Thismethodhas,however,proveninefficientformMSCsduetolowmMSCsnumberandcontaminationofhematopoieticcellsinthecultures.Tosolvethisproblem,manygroupshavedevelopedvariousmodifiedmMSCscultureconditionstoobtainsufficientnumbersofcellsintheshortesttimeandwiththehighesthomogeneity.Kopenetal.firstlydevelopedamethodtoeliminatemyelopoieticcellsusingananti-CD11bantibody,butthisprotocolcouldnotdepleteallthehematopoieticcells[33].Baddooetal.presentedamodifiedpurificationapproachbasedonimmunodepletion

JournalofBiomedicineandBiotechnology

Control

Modifiedharvest+ID

7

ControlModifiedharvest+ID100μm100μm100μm100μm

∗∗30OilredO-positive(cellspercm2)Areasumofcalciumdeposits/fieldControl(a)

UndifferentiatedModifiedharvest+ID60000

2040000

1020000

00

Control(b)

3winduction

Modifiedharvest+IDControl100μm100μm

Modifiedharvest+ID100μm

(c)

100μm

Figure6:InvitrodifferentiationofmMSCs.ThesameamountofnonimmunodepletedmMSCsandID-mMSCswereplatedandadipogenic,osteogenic,andchondrogenicdifferentiationwasevaluatedatpassage3.OilRedOstaining((a),×200),vonKossastaining((b),×40or×100)andcollagentypeIIstaining((c),×100)showthatID-mMSCsexhibitmuchmoredifferentiatedcells,indicatingahigherpurityofmultipotentMSCswithmodifiedharvestmethodandimmunodepletion.Representativepicturesareshownfromthreeindependentexperiments.∗P<.05,scalebar=100μm.

8JournalofBiomedicineandBiotechnology

100μm

(a)

(b)

100μm

(c)

100μm

Figure7:LatepassageID-mMSCsretaintri-lineagedifferentiationpotential.Whenexposedininductionmedium,passage8ID-mMSCscanstillexhibitdifferentiationpotentialintoadipocytes,osteoblasts,andchondrocytes,asshownbyOilRedOstaining((a)×200),vonKossastaining((b)×100)andcollagentypeIIstaining((c)×100).Representativepicturesareshownfromthreeindependentexperiments,scalebar=100μm.

ofCD11b/CD34/CD45positivecellsfromculturedBMcells[34].Inonestudy,positiveselectionwasperformedinanattempttoobtainamorehomogeneousmMSCspopulation[32].ButsincethereisnospecificmarkerforMSCs,othernon-MSCswereunavoidableintroducedintothecultures.Moreover,severalothertechniques,includ-ingoptimizationofculturedensityandfrequentmediumchange,havealsobeenproposedbuttheseprotocolsarenotstandardized[30,31].Therefore,itremainsnecessarytodevelopareliableandeasymethodtoisolateandexpandahomogeneouspopulationofmMSCsfrommouseBM.

ThestandardmethodthatisusedforisolationofmurineBM-derivedMSCsistoflushBMcellsfromhindlegsofmice.However,withthismethod,thefrequencyofcollectedMSCsisratherlow[42].OurharvestmethodinvolvesnotonlyflushingoutBMcells,butalsocrushingthebonesofhindlegsandvertebraeaswellasenzymaticaltreatmentoftheboneswithCollagenase(Figure1(a)).StromalcellsarepresentintheendosteumwhereasmaturehematopoieticcellsexistinthecenteroftheBM[43,44].Becauseofthisdeeplocation,itisdifficulttoobtainenoughMSCsevenafterstrongflushingduringmarrowcellharvest.Inthisstudy,usingthemodifiedisolationmethod,wecouldisolate19.4%moreBM-nucleatedcellsthanthestandardmethod.CFU-Fassay,whichwasusedtodetectandevaluatethefrequencyoftheMSCsinfreshBM,hasfurthermorebeenusedtovalidatetheeffectivenessofthismodifiedmethod(Figures2(b)and2(c)).

AfterharvestingBMwithourmodifiedprotocol,weperformedmagneticcellsortingafterthefirstpassageusingnegativeselectionwithCD11b/CD34/CD45antibodies-coupledmicrobeadsasproposedbyBaddooetal.[34](Figure1(b)).Twoconsecutiveroundsofimmunodepletion,removingrespectivelyCD11b-positivemonocyticcellsandCD34-positivehematopoieticstemcellscandepletethemajorpartofcontaminatedcells,andthethirdroundofCD45-positivecellsdepletioncouldfurthereliminateallresidualcontaminatedhematopoieticcells.WefoundthatafterimmunodepletiontheMSCspopulationappearedmuchmorehomogeneousshowingmostlyspindle-shaped,cells(Figure4),whileunderthestandardexpansioncondi-tions,culturesusuallyremainedmorphologicallyhighlyhet-erogeneousuntilpassage5-6,presentinground,polygonal,spindle-shapedandflattenedcells.Somedegreeofmorpho-logicalheterogeneitycouldstillbeobserveduptopassage6–8ormore.AlthoughtheCD11b/CD34/CD45immunode-pletionprotocoldidremovealmostallthecontaminatedhematopoieticcellsfromtheBMcultures,wehavetonoticethatthenucleatedcellyieldinourmousestrainwaslowaftertheimmunodepletionstepincombinationwiththestandardharvestmethod(3.7%onaverage).However,weobservedthatafterCD11b/CD34/CD45immunodepletionincombi-nationwithourmodifiedBMharvestmethod,theyieldofnucleatedcellswasnearlytwicehigher(Figure5(a)).Theimmunodepletedcellscultureduptopassage3werepositiveforCD90,CD73,andSca-1buttotallynegativeforCD14,CD34,andCD45(Figure5(b)),whilecontrolcellswerestillsignificantlycontaminatedwithCD45+cellsandslightlycontaminatedwithCD14+andCD34+cells(Figure5(c)).Inadditiontomorphologyandphenotype,thebiologicalpropertythatuniquelyidentifiesMSCsistheircapacityfortri-lineagemesenchymaldifferentiation.So,wefurthertestedthetri-lineagedifferentiationabilityofID-mMSCsandcontrolcellsatpassage3.ID-mMSCsandcontrolcellswerebothabletodifferentiateintoadipocytes,osteoblasts,andchondrocytesdeterminedbyOilRedO,vonKossaandtypeIIcollagenstainingwhenexposedtorespectivelyadipogenic,osteogenic,andchondrogenicmedia.However,withthesameinitialcellnumbersandinductionconditions,ID-mMSCsexhibitedamorevigoroustri-lineagedifferentiationpotentialascomparedtothecontrolcells(Figure6)andcanretaintheirrobustdifferentiationpotentialatleastuntilpassage8(Figure7).Basedonthemorphology,phenotype,anddifferentiationpotentialinvitro,wecanconcludethatimmunodepletedmMSCsaremorepurifiedintheearlypassages.

JournalofBiomedicineandBiotechnology5.Conclusion

Takentogether,thecurrentstudypresentsaneffective,quickandeasy-to-performmethodforenrichmentandpurificationofmurineBMderivedmesenchymalstemcellsinvitrobycombiningmechanicalcrushingandCollage-nasetreatmentatthemomentofharvestandanegativeimmunodepletionstepduringtheinvitroexpansionculture.ThisprotocolcanfacilitatetheinvitroandinvivostudyofmMSCs,bothforexaminingtheirbiologicalpropertiesaswellastheirtherapeuticpotentialinvariousmurinediseasemodels.

Acknowlegments

TheauthorswouldliketothankNicoleArras,AngeloWillems,VeerleDeGreef,andWimRenmansfortheirexperttechnicalassistance.TheirresearchworkissupportedbygrantsfromtheFoundationforScientificResearch(FWO),theVrijeUniversiteitBrussel(HOA),the“VlaamseLigategenKanker”Belgium.S.XuissupportedbyaCSC-VUBscholarship.

ConflictsofInterests

Noconflictingfinancialinterestsexist.

References

[1]M.F.Pittenger,A.M.Mackay,S.C.Becketal.,“Multilineage

potentialofadulthumanmesenchymalstemcells,”Science,vol.284,no.5411,pp.143–147,1999.

[2]X.-Q.Kang,W.-J.Zang,T.-S.Songetal.,“Ratbonemarrow

mesenchymalstemcellsdifferentiateintohepatocytesinvitro,”WorldJournalofGastroenterology,vol.11,no.22,pp.3479–3484,2005.

[3]J.R.Sanchez-Ramos,“Neuralcellsderivedfromadultbone

marrowandumbilicalcordblood,”JournalofNeuroscienceResearch,vol.69,no.6,pp.880–893,2002.

[4]L.-B.Chen,X.-B.Jiang,andL.Yang,“Differentiationofrat

marrowmesenchymalstemcellsintopancreaticisletbeta-cells,”WorldJournalofGastroenterology,vol.10,no.20,pp.3016–3020,2004.

[5]P.S.In’tAnker,S.A.Scherjon,C.Kleijburg-VanDerKeuret

al.,“Isolationofmesenchymalstemcellsoffetalormaternaloriginfromhumanplacenta,”StemCells,vol.22,no.7,pp.1338–1345,2004.

[6]P.S.In’tAnker,S.A.Scherjon,C.Kleijburg-vanderKeuret

al.,“Amnioticfluidasanovelsourceofmesenchymalstemcellsfortherapeutictransplantation,”Blood,vol.102,no.4,pp.1548–1549,2003.

[7]A.Erices,P.Conget,andJ.J.Minguell,“Mesenchymal

progenitorcellsinhumanumbilicalcordblood,”BritishJournalofHaematology,vol.109,no.1,pp.235–242,2000.[8]P.A.Zuk,M.Zhu,P.Ashjianetal.,“Humanadiposetissueisa

sourceofmultipotentstemcells,”MolecularBiologyoftheCell,vol.13,no.12,pp.4279–4295,2002.

[9]C.Campagnoli,I.A.G.Roberts,S.Kumar,P.R.Bennett,I.

Bellantuono,andN.M.Fisk,“Identificationofmesenchymalstem/progenitorcellsinhumanfirst-trimesterfetalblood,

9

liver,andbonemarrow,”Blood,vol.98,no.8,pp.2396–2402,2001.

[10]

A.J.Friedenstein,U.F.Gorskaja,andN.N.Kulagina,“Fibrob-lastprecursorsinnormalandirradiatedmousehematopoieticorgans,”ExperimentalHematology,vol.4,no.5,pp.267–274,1976.

[11]P.Bianco,M.Riminucci,S.Gronthos,andP.G.Robey,“Bonemarrowstromalstemcells:nature,biology,andpotentialapplications,”StemCells,vol.19,no.3,pp.180–192,2001.[12]S.Sun,Z.Guo,X.Xiaoetal.,“Isolationofmousemarrowmesenchymalprogenitorsbyanovelandreliablemethod,”StemCells,vol.21,no.5,pp.527–535,2003.

[13]Y.L.Tang,“Autologousmesenchymalstemcellsforpost-ischemicmyocardialrepair,”Methodsinmolecularmedicine,vol.112,pp.183–192,2005.

[14]

K.LeBlanc,I.Rasmusson,B.Sundbergetal.,“Treatmentofsevereacutegraft-versus-hostdiseasewiththirdpartyhaploidenticalmesenchymalstemcells,”Lancet,vol.363,no.9419,pp.1439–1441,2004.

[15]

M.KassemandB.M.Abdallah,“Humanbone-marrow-derivedmesenchymalstemcells:biologicalcharacteristicsandpotentialroleintherapyofdegenerativediseases,”CellandTissueResearch,vol.331,no.1,pp.157–163,2008.

[16]A.Nakamizo,F.Marini,T.Amanoetal.,“Humanbonemarrow-derivedmesenchymalstemcellsinthetreatmentofgliomas,”CancerResearch,vol.65,no.8,pp.3307–3318,2005.[17]

E.J.Caterson,L.J.Nesti,K.G.Danielson,andR.S.Tuan,“Humanmarrow-derivedmesenchymalprogenitorcells:iso-lation,cultureexpansion,andanalysisofdifferentiation,”MolecularBiotechnology,vol.20,no.3,pp.245–256,2002.[18]

D.R.Martin,N.R.Cox,T.L.Hathcock,G.P.Niemeyer,andH.J.Baker,“Isolationandcharacterizationofmultipotentialmesenchymalstemcellsfromfelinebonemarrow,”Experi-mentalHematology,vol.30,no.8,pp.879–886,2002.

[19]

S.Kadiyala,R.G.Young,M.A.Thiede,andS.P.Bruder,“Cultureexpandedcaninemesenchymalstemcellspossessosteochondrogenicpotentialinvivoandinvitro,”CellTrans-plantation,vol.6,no.2,pp.125–134,1997.

[20]D.P.LennonandA.I.Caplan,“Isolationofratmarrow-derivedmesenchymalstemcells,”ExperimentalHematology,vol.34,no.11,pp.1606–1607,2006.

[21]

H.L.Jessop,B.S.Noble,andA.Cryer,“Thedifferentiationofapotentialmesenchymalstemcellpopulationwithinovinebonemarrow,”BiochemicalSocietyTransactions,vol.22,no.3,p.248S,1994.

[22]

R.Izadpanah,T.Joswig,F.Tsien,J.Dufour,J.C.Kirijan,andB.A.Bunnell,“Characterizationofmultipotentmesenchymalstemcellsfromthebonemarrowofrhesusmacaques,”StemCellsandDevelopment,vol.14,no.4,pp.440–451,2005.

[23]J.Ringe,C.Kaps,B.Schmittetal.,“Porcinemesenchymalstemcells:inductionofdistinctmesenchymalcelllineages,”CellandTissueResearch,vol.307,no.3,pp.321–327,2002.

[24]

S.Wakitani,T.Goto,S.J.Pinedaetal.,“Mesenchymalcell-basedrepairoflarge,full-thicknessdefectsofarticularcartilage,”JournalofBoneandJointSurgeryA,vol.76,no.4,pp.579–592,1994.

[25]J.D.Mosca,J.K.Hendricks,D.Buyaneretal.,“Mesenchymalstemcellsasvehiclesforgenedelivery,”ClinicalOrthopaedicsandRelatedResearch,vol.379,supplement,pp.S71–S90,2000.[26]

L.DaSilvaMeirellesandN.B.Nardi,“Murinemarrow-derivedmesenchymalstemcell:isolation,invitroexpansion,andcharacterization,”BritishJournalofHaematology,vol.123,no.4,pp.702–711,2003.

10

[27]J.Tolar,A.J.Nauta,M.J.Osbornetal.,“Sarcomaderivedfrom

culturedmesenchymalstemcells,”StemCells,vol.25,no.2,pp.371–379,2007.

[28]S.Aguilar,E.Nye,J.Chanetal.,“Murinebutnothuman

mesenchymalstemcellsgenerateosteosarcoma-likelesionsinthelung,”StemCells,vol.25,no.6,pp.1586–1594,2007.

[29]H.Li,X.Fan,R.C.Kovietal.,“Spontaneousexpression

ofembryonicfactorsandp53pointmutationsinagedmesenchymalstemcells:amodelofage-relatedtumorigenesisinmice,”CancerResearch,vol.67,no.22,pp.10889–10898,2007.

[30]M.B.Eslaminejad,A.Nikmahzar,L.Taghiyar,S.Nadri,and

M.Massumi,“Murinemesenchymalstemcellsisolatedbylowdensityprimaryculturesystem,”DevelopmentGrowthandDifferentiation,vol.48,no.6,pp.361–370,2006.

[31]M.SoleimaniandS.Nadri,“Aprotocolforisolationand

cultureofmesenchymalstemcellsfrommousebonemarrow,”NatureProtocols,vol.4,no.1,pp.102–106,2009.

[32]S.NadriandM.Soleimani,“Isolationmurinemesenchymal

stemcellsbypositiveselection,”InVitroCellularandDevelop-mentalBiology—Animal,vol.43,no.8-9,pp.276–282,2007.[33]G.C.Kopen,D.J.Prockop,andD.G.Phinney,“Marrow

stromalcellsmigratethroughoutforebrainandcerebellum,andtheydifferentiateintoastrocytesafterinjectionintoneonatalmousebrains,”ProceedingsoftheNationalAcademyofSciencesoftheUnitedStatesofAmerica,vol.96,no.19,pp.10711–10716,1999.

[34]M.Baddoo,K.Hill,R.Wilkinsonetal.,“Characterizationof

mesenchymalstemcellsisolatedfrommurinebonemarrowbynegativeselection,”JournalofCellularBiochemistry,vol.89,no.6,pp.1235–1249,2003.

[35]M.B.EslaminejadandS.Nadri,“Murinemesenchymalstem

cellisolatedandexpandedinlowandhighdensityculturesystem:surfaceantigenexpressionandosteogenicculturemineralization,”InVitroCellularandDevelopmentalBiology—Animal,vol.45,no.8,pp.451–459,2009.

[36]S.Morikawa,Y.Mabuchi,Y.Kubotaetal.,“Prospective

identification,isolation,andsystemictransplantationofmul-tipotentmesenchymalstemcellsinmurinebonemarrow,”TheJournalofexperimentalmedicine,vol.206,no.11,pp.2483–2496,2009.

[37]B.J.Short,N.Brouard,andP.J.Simmons,“Prospective

isolationofmesenchymalstemcellsfrommousecompactbone,”MethodsinMolecularBiology,vol.482,pp.259–268,2009.

[38]A.J.Friedenstein,R.K.Chailakhjan,andK.S.Lalykina,“The

developmentoffibroblastcoloniesinmonolayerculturesofguinea-pigbonemarrowandspleencells,”CellandTissueKinetics,vol.3,no.4,pp.393–403,1970.

[39]H.Castro-Malaspina,R.E.Gay,andG.Resnick,“Characteri-zationofhumanbonemarrowfibroblastcolony-formingcells(CFU-F)andtheirprogeny,”Blood,vol.56,no.2,pp.289–301,1980.

[40]I.Sekiya,B.L.Larson,J.T.Vuoristo,J.-G.Cui,andD.J.

Prockop,“Adipogenicdifferentiationofhumanadultstemcellsfrombonemarrowstroma(MSCs),”JournalofBoneandMineralResearch,vol.19,no.2,pp.256–264,2004.

[41]D.C.SheehanandB.B.Hrapchak,TheoryandPracticeof

Histotechnology,Mosby,St.Louis,Mo,USA,2ndedition,1980.[42]D.G.Phinney,G.Kopen,R.L.Isaacson,andD.J.Prockop,

“Plasticadherentstromalcellsfromthebonemarrowofcommonlyusedstrainsofinbredmice:variationsinyield,growth,anddifferentiation,”JournalofCellularBiochemistry,vol.72,no.4,pp.570–585,1999.

JournalofBiomedicineandBiotechnology

[43]L.Fouillard,M.Bensidhoum,D.Boriesetal.,“Engraftment

ofallogeneicmesenchymalstemcellsinthebonemarrowofapatientwithsevereidiopathicaplasticanemiaimprovesstroma,”Leukemia,vol.17,no.2,pp.474–476,2003.

[44]B.Short,N.Brouard,R.Driessen,andP.J.Simmons,

“ProspectiveisolationofstromalprogenitorcellsfrommouseBM,”Cytotherapy,vol.3,no.5,pp.407–408,2001.

因篇幅问题不能全部显示,请点此查看更多更全内容